Boolean Convolution of Probability Measures on the Unit Circle

نویسندگان

  • UWE FRANZ
  • Uwe Franz
چکیده

We introduce the boolean convolution for probability measures on the unit circle. Roughly speaking, it describes the distribution of the product of two boolean independent unitary random variables. We find an analogue of the characteristic function and determine all infinitely divisible probability measures on the unit circle for the boolean convolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ec 2 00 6 BOOLEAN CONVOLUTION OF PROBABILITY MEASURES ON THE UNIT CIRCLE by Uwe Franz

—We introduce the boolean convolution for probability measures on the unit circle. Roughly speaking, it describes the distribution of the product of two boolean independent unitary random variables. We find an analogue of the characteristic function and determine all infinitely divisible probability measures on the unit circle for the boolean convolution. Résumé (Convolution booléenne de probab...

متن کامل

Limit Theorems in Free Probability Theory. Ii

Based on an analytical approach to the definition of multiplicative free convolution on probability measures on the nonnegative line R+ and on the unit circle T we prove analogs of limit theorems for nonidentically distributed random variables in classical Probability Theory.

متن کامل

Multiplicative Monotone Convolutions

Recently, Bercovici has introduced multiplicative convolutions based on Muraki’s monotone independence and shown that these convolution of probability measures correspond to the composition of some function of their Cauchy transforms. We provide a new proof of this fact based on the combinatorics of moments. We also give a new characterisation of the probability measures that can be embedded in...

متن کامل

Monotone and Boolean Convolutions for Non-compactly Supported Probability Measures

Abstract. The equivalence of the characteristic function approach and the probabilistic approach to monotone and boolean convolutions is proven for non-compactly supported probability measures. A probabilistically motivated definition of the multiplicative boolean convolution of probability measures on the positive half-line is proposed. Unlike Bercovici’s multiplicative boolean convolution it ...

متن کامل

Bertrand’s Paradox Revisited: More Lessons about that Ambiguous Word, Random

The Bertrand paradox question is: “Consider a unit-radius circle for which the length of a side of an inscribed equilateral triangle equals 3 . Determine the probability that the length of a ‘random’ chord of a unit-radius circle has length greater than 3 .” Bertrand derived three different ‘correct’ answers, the correctness depending on interpretation of the word, random. Here we employ geomet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004